Genome Screen for Quantitative Trait Loci Contributing to Normal Variation in Bone Mineral Density: The Framingham Study
Open Access
- 1 September 2002
- journal article
- research article
- Published by Oxford University Press (OUP) in Journal of Bone and Mineral Research
- Vol. 17 (9) , 1718-1727
- https://doi.org/10.1359/jbmr.2002.17.9.1718
Abstract
A genome‐wide scan was performed in a randomly ascertained set of 330 extended families from the population‐based Framingham Study to identify chromosomal regions possibly linked to bone mineral density (BMD). A set of 401 microsatellite markers was typed at a 10‐centimorgan (cM) average density throughout the genome. BMD was measured at the femoral neck, trochanter, Ward's area, and lumbar spine in 1557 participants of both Framingham cohorts. BMDs were adjusted for age, body mass index (BMI), height, alcohol, caffeine, calcium and vitamin D intakes, smoking, physical activity, and estrogen use in women within each sex and cohort. Strong heritabilities (values between 0.543 and 0.633) were found for the adjusted BMD at all sites. Two‐point and multipoint quantitative linkage analyses were performed for each BMD site using the maximum likelihood variance components method. By two‐point screening, loci of suggestive linkage were identified on chromosomes 6 and 21, with the maximum log10 of the odds ratio (LOD) scores of 2.34 for the trochanter at D21S1446 and 2.93 for the femoral neck at D6S2427. Lumbar spine BMD had maxima at D6S2427 (LOD = 1.88) and at D12S395 (LOD = 2.08). Multipoint linkage analysis revealed suggestive linkage of trochanteric BMD at a broad (∼20 cM) interval on chromosome 21q, with the peak linkage close to D21S1446 (LOD = 3.14). LOD scores were 2.13 at 8q24 with Ward's BMD and 1.92 at 14q21.3 with lumbar spine BMD. This largest genome screen to date for genes underlying normal variation in BMD, adjusted for a large number of covariates, will help to identify new positional candidate genes, otherwise unrecognized.Keywords
This publication has 48 references indexed in Scilit:
- Quantitative Trait Loci for Femoral and Lumbar Vertebral Bone Mineral Density in C57BL/6J and C3H/HeJ Inbred Strains of MiceJournal of Bone and Mineral Research, 2001
- An Integrated Physical Map of 8q22–q24: Use in Positional Cloning and Deletion Analysis of Langer–Giedion SyndromeGenomics, 2001
- Evidence for a Major Gene for Bone Mineral Density in Idiopathic Osteoporotic FamiliesJournal of Bone and Mineral Research, 2000
- Risk Factors for Longitudinal Bone Loss in Elderly Men and Women: The Framingham Osteoporosis StudyJournal of Bone and Mineral Research, 2000
- Genetic Epidemiological Approaches to the Search for Osteoporosis GenesJournal of Bone and Mineral Research, 2000
- Linkage of a QTL Contributing to Normal Variation in Bone Mineral Density to Chromosome 11q12–13Journal of Bone and Mineral Research, 1998
- Linkage of a Gene Causing High Bone Mass to Human Chromosome 11 (11q12-13)American Journal of Human Genetics, 1997
- Medical Expenditures for the Treatment of Osteoporotic Fractures in the United States in 1995: Report from the National Osteoporosis FoundationJournal of Bone and Mineral Research, 1997
- Genetic dissection of complex traits: guidelines for interpreting and reporting linkage resultsNature Genetics, 1995
- Bone mineral density in elderly men and women: Results from the framingham osteoporosis studyJournal of Bone and Mineral Research, 1992