The Arabidopsis NPR1 Disease Resistance Protein Is a Novel Cofactor That Confers Redox Regulation of DNA Binding Activity to the Basic Domain/Leucine Zipper Transcription Factor TGA1
Top Cited Papers
- 2 September 2003
- journal article
- Published by Oxford University Press (OUP) in Plant Cell
- Vol. 15 (9) , 2181-2191
- https://doi.org/10.1105/tpc.012849
Abstract
The Arabidopsis NPR1 protein is essential for regulating salicylic acid-dependent gene expression during systemic acquired resistance. NPR1 interacts differentially with members of the TGA class of basic domain/Leu zipper transcription factors and regulates their DNA binding activity. Here, we report that although TGA1 does not interact with NPR1 in yeast two-hybrid assays, treatment with salicylic acid induces the interaction between these proteins in Arabidopsis leaves. This phenomenon is correlated with a reduction of TGA1 Cys residues. Furthermore, site-directed mutagenesis of TGA1 Cys-260 and Cys-266 enables the interaction with NPR1 in yeast and Arabidopsis. Together, these results indicate that TGA1 relies on the oxidation state of Cys residues to mediate the interaction with NPR1. An intramolecular disulfide bridge in TGA1 precludes interaction with NPR1, and NPR1 can only stimulate the DNA binding activity of the reduced form of TGA1. Unlike its animal and yeast counterparts, the DNA binding activity of TGA1 is not redox regulated; however, this property is conferred by interaction with the NPR1 cofactor.Keywords
This publication has 53 references indexed in Scilit:
- Over‐expression of TGA5, which encodes a bZIP transcription factor that interacts with NIM1/NPR1, confers SAR‐independent resistance in Arabidopsis thaliana to Peronospora parasiticaThe Plant Journal, 2002
- REGULATION OF GENE EXPRESSION BY REACTIVE OXYGENAnnual Review of Pharmacology and Toxicology, 1999
- Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain 1 1Edited by F. CohenJournal of Molecular Biology, 1999
- THE OXIDATIVE BURST IN PLANT DISEASE RESISTANCEAnnual Review of Plant Biology, 1997
- The Arabidopsis NIM1 protein shows homology to the mammalian transcription factor inhibitor I kappa B.Plant Cell, 1997
- The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin RepeatsCell, 1997
- Characterization of aSalicylicAcid-Insensitive Mutant (sai1) ofArabidopsis thaliana, Identified in a Selective Screen Utilizing the SA-Inducible Expression of thetms2GeneMolecular Plant-Microbe Interactions®, 1997
- Nitric Oxide Modification of Rat Brain NeurograninPublished by Elsevier ,1996
- Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance.Plant Cell, 1991
- Redox Regulation of Fos and Jun DNA-Binding Activity in VitroScience, 1990