Thermal evolution of X/C multilayers (with X=W, Ni, or SiWSi): A systematic study

Abstract
The thermal behavior of X/C multilayers (nanometer‐thick layers made of tungsten, nickel, or SiWSi alternating with carbide or pure carbon) was studied. Two types of annealing were performed: the pulsed laser annealing in air and the classical thermal annealing in a vacuum furnace. Depending on the composition and the structure of the layered materials, thermal stability or diffusion mechanisms were observed and further analyzed by small‐angle x‐ray scattering, transmission electron microscopy, and Auger electron spectroscopy. The results show that the period expansion and the reflectivity evolution, that were observed in some cases after treatment, are caused both by structural changes into the layers and by exchange of matter between layers. These changes always induce a partial graphitization of the amorphous carbon and, in the case of W/C multilayers, the formation of a W2C compound.