Genetically Induced Subcellular Mislocation of Neurospora Mitochondrial Malate Dehydrogenase

Abstract
Among 60 ultraviolet-induced missense mutations of the structural genes that code for mitochondrial malate dehydrogenase (M-MDH, EC 1.1.1.37) of Neurospora crassa, two enzyme phenotypes are observed. In a previously described class (C-mutants), M-MDH is malfunctional because of an abnormal conformation induced by association with mitochondria. We describe here a second class (K-mutants) in which the enzyme is malfunctional because of an altered subcellular location. Thus, although both classes cause lesions in the assimilation of exogenous malate, the nature of the lesions differs. In C-mutants, the enzyme misfunctions because of low affinity for malate but remains mitochondrial-bound as in wild-type. Conversely, K-mutant M-MDH is dispersed throughout the cytoplasm. Studies of a repressible "glyoxysome" isozyme and a constitutive M-MDH of prototroph and mutants indicate that both isozymes are encoded by the same nuclear structural genes and have polypeptide subunits in common.

This publication has 18 references indexed in Scilit: