EFFECTS OF HARVEST STAGE AND LIGHT ON THE BIOCHEMICAL COMPOSITION OF THE DIATOM THALASSIOSIRA PSEUDONANA1
- 1 February 1996
- journal article
- Published by Wiley in Journal of Phycology
- Vol. 32 (1) , 64-73
- https://doi.org/10.1111/j.0022-3646.1996.00064.x
Abstract
The marine diatom Thalassiosira pseudonana (Hustedt, clone 3H) Hasle and Heimdal was cultured under three different light regimes: 100 μmol photon · m−2· s−1 on 12:12 h light : dark (L:D) cycles; 50 μmol photon · m−2· s−2 on 24:0 h L:D; and 100 μmol photon · m−2· s−1 on 24:0 h L:D. It was harvested during logarithmic and stationary phases for analysis of biochemical composition. Across the different light regimes, protein (as % of organic weight) was highest in cells during logarithmic phase, whereas carbohydrate and lipid were highest during stationary phase. Carbohydrate concentrations were most affected by the different light regimes; cells grown under 12:12 h L:D contained 37–44% of the carbohydrate of cells grown under 24:0 h L:D. Cells in logarithmic phase had high proportions of polar lipids (79 to 89% of total lipid) and low triacylglycerol (≤10% of total lipid). Cells in stationary phase contained less polar lipid (48 to 57% of total lipid) and more triacylglycerol (22 to 45% of total lipid). The fatty acid composition of logarithmic phase cells grown under 24:0 h L:D were similar, but the 100 μmol photon · m−2· s−1 (12:12 h L:D) cells at the same stage contained a higher proportion of polyunsaturated fatty acids (PUFAs) and a lower proportion of saturated and monounsaturated fatty acids due to different levels of 16:0, 16:1(n‐7), 16:4(n‐1), 18:4(n‐3), and 20:5(n‐3). With the onset of stationary phase, cells grown at 100 μmol photon · m−2· s−1 (both 12:12 and 24:0 h L:D) increased in proportions of saturated and monounsaturated fatty adds and decreased in PUFAs. Concentrations (% organic or dry weight) of 14:0, 16:0, 16:1(n‐7), 20:5(n‐3), and 22:6(n‐3) increased in cells of all cultures during stationary phase. The amino acid compositions of cells were similar irrespective of harvest stage and light regime. For mariculture, the recommended light regime for culturing T. pseudonana will depend on the nutritional requirements of the animal to which the alga is fed. For rapidly growing bivalve mollusc larvae, stationary‐phase cultures grown under a 24:0 h L:D regime may provide more energy by virtue of their higher percentage of carbohydrate and high proportions and concentrations of energy‐rich saturated fatty acids.Keywords
This publication has 37 references indexed in Scilit:
- Biochemical quality of marine unicellular algae with special emphasis on lipid composition. I. Isochrysis galbanaPublished by Elsevier ,2003
- Effect of Dietary Protein Content on Growth of Juvenile Mussels, Mytilus trossulus (Gould 1850)The Biological Bulletin, 1993
- Nutritional condition of rock scallop, Crassadoma gigantea (Gray), larvae fed mixed algal dietsAquaculture, 1990
- Influence of algal diets on biochemical composition and energy reserves in Patinopecten yessoensis (Jay) larvaeAquaculture, 1989
- Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimesAquaculture, 1989
- Biochemical composition and energy content of six species of phytoplankton used in mariculture of bivalvesAquaculture, 1987
- Thalassiosira oceanica and T. pseudonana: two different photoadaptational responsesMarine Ecology Progress Series, 1987
- Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. III. Isochrysis sp. and Monallantus salina experiments and comparative conclusionsBiomass, 1984
- Nutritional values of live organisms used in Japan for mass propagation of fish: A reviewAquaculture, 1983
- PHYTOPLANKTON LIPIDS: INTERSPECIFIC DIFFERENCES AND EFFECTS OF NITRATE, SILICATE AND LIGHT‐DARK CYCLES1Journal of Phycology, 1981