15N and 195Pt NMR-Study of the Effect of Chain-Length, n, on the Reactions of Amino-Acids, +NH3(CH2)NCO2 (N = 1, 2, 3), With Platinum(II) Ammine Complexes
- 1 January 1986
- journal article
- research article
- Published by CSIRO Publishing in Australian Journal of Chemistry
- Vol. 39 (9) , 1347-1362
- https://doi.org/10.1071/ch9861347
Abstract
15N and 195Pt n.m.r. have been used to study the reactions in solution of cis -Pt(15NH3)2(H2O)22+ (1), cis -Pt(15NH3)2(OH)2 (2), cis -Pt(15NH3)2Cl2 (3), Pt(15NH3)3(H2O)2+ (4) and Pt(15NH3)3(OH)+ (5) with the amino acids +NH3(CH2)nCO2- (LH) [n = 1 ( glycine, glyH ); n = 2 (β- alanine , βalaH ), n = 3 (γ- aminobutyric acid, abaH )]. While glycine with (1) gives initially cis -Pt(NH3)2( glyH -O)(H2O)2+, with facile ring closure to Pt(NH3)2( gly - N,O)+, β- alanine and γ- aminobutyric acid with (1) give solutions containing a mixture of cis -Pt(NH3)2(LH-O)(H2O)2+, cis -Pt(NH3)2(LH.O)22+, and {Pt(NH3)2}2(μO,O-LH)(μ-OH)3+, which are quite stable kinetically under mildly acid conditions. Ring closure to Pt(NH3)2(L-N,O)+ becomes increasingly difficult as n increases. At 37°C and initial pH 7, (3) with glycine gives Pt(NH3)2( gly -N,O)+, but β- alanine and γ- aminobutyric acid give predominantly cis -Pt(NH3)2Cl(LH-O)+. Compound (4) with glycine gives initially Pt(NH3)3( glyH -O)2+, which then isomerizes to Pt(NH3)3( glyH -N)2+. In corresponding reactions with β- alanine and γ- aminobutyric acid, Pt(NH3)3(LH-O)2+ is stable indefinitely under mildly acid conditions. Differences in reactivity of the amino acids with (2) and (5) in alkaline solutions may be correlated with decreasing nucleophilicity of the amine group of NH2(CH2)nCO2- as n increases.Keywords
This publication has 2 references indexed in Scilit:
- Studies of the binding interactions of cis-diamminedichloroplatinum(II) with amines and nucleosides by nitrogen-15 nuclear magnetic resonanceBiochemistry, 1982
- A 195Pt and 15N N.M.R. study of the anticancer drug, cis-diammine-dichloroplatinum(II), and its hydrolysis and oligomerization productsAustralian Journal of Chemistry, 1981