The unfolded protein response
Top Cited Papers
- 24 January 2006
- journal article
- review article
- Published by Wolters Kluwer Health in Neurology
- Vol. 66 (1_suppl_1) , S102-S109
- https://doi.org/10.1212/01.wnl.0000192306.98198.ec
Abstract
The endoplasmic reticulum (ER) is an intracellular organelle consisting of a membranous labyrinth network that extends throughout the cytoplasm of the cell and is contiguous with the nuclear envelope. In all eukaryotic cells, the ER is the site where folding and assembly occurs for proteins destined to the extracellular space, plasma membrane, and the exo/endocytic compartments. The ER is exquisitely sensitive to alterations in homeostasis, and provides stringent quality control systems to ensure that only correctly folded proteins transit to the Golgi and unfolded or misfolded proteins are retained and ultimately degraded. A number of biochemical and physiologic stimuli, such as perturbation in calcium homeostasis or redox status, elevated secretory protein synthesis, expression of misfolded proteins, sugar/glucose deprivation, altered glycosylation, and overloading of cholesterol can disrupt ER homeostasis, impose stress to the ER, and subsequently lead to accumulation of unfolded or misfolded proteins in the ER lumen. The ER has evolved highly specific signaling pathways called the unfolded protein response (UPR) to cope with the accumulation of unfolded or misfolded proteins. Recent discoveries of the mechanisms of ER stress signaling have led to major new insights into the diverse cellular and physiologic processes that are regulated by the UPR. This review summarizes the complex regulation of UPR signaling and its relevance to human physiology and disease.Keywords
This publication has 92 references indexed in Scilit:
- An Integrated Stress Response Regulates Amino Acid Metabolism and Resistance to Oxidative StressPublished by Elsevier ,2003
- ER Stress Regulation of ATF6 Localization by Dissociation of BiP/GRP78 Binding and Unmasking of Golgi Localization SignalsDevelopmental Cell, 2002
- IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNANature, 2002
- XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription FactorCell, 2001
- Diabetes Mellitus and Exocrine Pancreatic Dysfunction in Perk−/− Mice Reveals a Role for Translational Control in Secretory Cell SurvivalPublished by Elsevier ,2001
- tRNA Ligase Is Required for Regulated mRNA Splicing in the Unfolded Protein ResponseCell, 1996
- A Novel Mechanism for Regulating Activity of a Transcription Factor That Controls the Unfolded Protein ResponseCell, 1996
- A transmembrane protein with a cdc 2+ CDC 28 - related kinase activity is required for signaling from the ER to the nucleusPublished by Elsevier ,1993
- Transcriptional induction of genes encoding endoplasmic reticulum resident proteins requires a transmembrane protein kinaseCell, 1993
- Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's diseaseNature, 1991