Early hydrogen-bonding events in the folding reaction of ubiquitin.
- 15 March 1992
- journal article
- research article
- Published by Proceedings of the National Academy of Sciences in Proceedings of the National Academy of Sciences
- Vol. 89 (6) , 2017-2021
- https://doi.org/10.1073/pnas.89.6.2017
Abstract
The formation of hydrogen-bonded structure in the folding reaction of ubiquitin, a small cytoplasmic protein with an extended beta-sheet and an alpha-helix surrounding a pronounced hydrophobic core, has been investigated by hydrogen-deuterium exchange labeling in conjunction with rapid mixing methods and two-dimensional NMR analysis. The time course of protection from exchange has been measured for 26 back-bone amide protons that form stable hydrogen bonds upon refolding and exchange slowly under native conditions. Amide protons in the beta-sheet and the alpha-helix, as well as protons involved in hydrogen bonds at the helix/sheet interface, become 80% protected in an initial 8-ms folding phase, indicating that the two elements of secondary structure form and associate in a common cooperative folding event. Somewhat slower protection rates for residues 59, 61, and 69 provide evidence for the subsequent stabilization of a surface loop. Most probes also exhibit two minor phases with time constants of about 100 ms and 10 s. Only two of the observed residues, Gln-41 and Arg-42, display significant slow folding phases, with amplitudes of 37% and 22%, respectively, which can be attributed to native-like folding intermediates containing cis peptide bonds for Pro-37 and/or Pro-38. Compared with other proteins studied by pulse labeling, including cytochrome c, ribonuclease, and barnase, the initial formation of hydrogen-bonded structure in ubiquitin occurs at a more rapid rate and slow-folding species are less prominent.Keywords
This publication has 24 references indexed in Scilit:
- Early folding intermediate of ribonuclease A.Proceedings of the National Academy of Sciences, 1990
- Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli.Proceedings of the National Academy of Sciences, 1989
- Identification of the long ubiquitin extension as ribosomal protein S27aNature, 1989
- [22] Structural characterization of protein folding intermediates by proton magnetic resonance and hydrogen exchangePublished by Elsevier ,1989
- Structural characterization of folding intermediates in cytochrome c by H-exchange labelling and proton NMRNature, 1988
- NMR evidence for an early framework intermediate on the folding pathway of ribonuclease ANature, 1988
- Sequential proton NMR assignments and secondary structure identification of human ubiquitinBiochemistry, 1987
- Individual amide proton exchange rates in thermally unfolded basic pancreatic trypsin inhibitorBiochemistry, 1985
- Effect of proline residues on protein foldingJournal of Molecular Biology, 1981
- The X‐Pro peptide bond as an nmr probe for conformational studies of flexible linear peptidesBiopolymers, 1976