Quantum slow motion

Abstract
We investigate the center-of-mass motion of cold atoms in a standing amplitude modulated laser field. We use a simple model to explain the momentum distribution of the atoms after any distinct number of modulation cycles. The atoms starting near a classical phase-space resonance move slower than we would expect classically. We explain this by showing that for a wave packet on the classical resonances we can replace the complicated dynamics in the quantum Liouville equation in phase space by its classical dynamics with a modified potential.

This publication has 20 references indexed in Scilit: