Optimization of biphasic waveforms for human nonthoracotomy defibrillation.
- 1 December 1993
- journal article
- clinical trial
- Published by Wolters Kluwer Health in Circulation
- Vol. 88 (6) , 2646-2654
- https://doi.org/10.1161/01.cir.88.6.2646
Abstract
BACKGROUND Biphasic waveforms reduce defibrillation threshold (DFT) in a wide variety of models. Although there are several human studies of long-duration, high-tilt biphasic waveform defibrillation, the specific biphasic waveform shape required to achieve optimal DFT reduction is unknown. METHODS AND RESULTS This study tested the effect of single capacitor biphasic waveform tilt modification on DFT using a paired study design in 18 patients undergoing nonthoracotomy defibrillator implantation. Baseline DFT was obtained using a 65% tilt, simultaneous pulse, bidirectional monophasic shock from a right ventricular cathode to a coronary sinus or superior vena cava lead and a subscapular patch. The single-capacitor biphasic waveform shocks, delivered over the same pathways, consisted of either both phases at 65% tilt (65/65 biphasic waveform) to produce an overall tilt of 88% and a delivered energy 11% greater than monophasic shock or both phases at 42% tilt (42/42 biphasic waveform) to produce an overall tilt of 66% and delivered energy equal to monophasic shock. The 65/65 biphasic waveform reduced stored energy DFT 25%, from 16.2 +/- 4.4 J with monophasic shock to 12.1 +/- 5.3 J (P < .02); however, it did not significantly reduce the delivered energy DFT. In contrast, the 42/42 biphasic waveform required 49% less stored energy (16.2 +/- 4.4 J, monophasic shock, vs 8.3 +/- 3.3 J, biphasic waveform; P < .001) and 49% less delivered energy (14.2 +/- 3.8 J, monophasic shock, vs 7.3 +/- 2.9 J, biphasic waveform; P < .001) than monophasic shock for successful defibrillation. The 42/42 biphasic waveform delivered energy DFT was 4.6 +/- 5.2 J (39%) less than 65/65 biphasic waveform DFT (P < .002). CONCLUSIONS DFT reduction is an inherent electrophysiological property of biphasic waveforms that is independent of delivered energy. Overall biphasic waveform tilt and the relative amplitudes of the waveform phases are important factors in defibrillation efficacy. Defibrillation with a 42/42 biphasic waveform is more efficacious than 65/65 biphasic waveform defibrillation; however, the optimal biphasic waveform remains unknown.Keywords
This publication has 16 references indexed in Scilit:
- Prospective comparison of biphasic and monophasic shocks for implantable cardioverter-defibrillators using endocardial leadsThe American Journal of Cardiology, 1992
- Comparison of the internal defibrillation thresholds for monophasic and double and single capacitor biphasic waveformsJournal of the American College of Cardiology, 1989
- A prospective randomized evaluation of biphasic versus monophasic waveform pulses on defibrillation efficacy in humansJournal of the American College of Cardiology, 1989
- Ventricular defibrillation using biphasic waveforms: The importance of phasic durationJournal of the American College of Cardiology, 1989
- Improved low energy defibrillation efficacy in man with the use of a biphasic truncated exponential waveformAmerican Heart Journal, 1989
- Strength‐Duration Curves of Fixed Pulse Width Variable Tilt Truncated Exponential Waveforms for Nonthoracomy Internal Defibrillation in DogsPacing and Clinical Electrophysiology, 1988
- The relationship between successful defibrillation and delivered energy in open-chest dogs: Reappraisal of the “defibrillation threshold” conceptAmerican Heart Journal, 1987
- Activation during ventricular defibrillation in open-chest dogs. Evidence of complete cessation and regeneration of ventricular fibrillation after unsuccessful shocks.Journal of Clinical Investigation, 1986
- Termination of ventricular fibrillation in dogs by depolarizing a critical amount of myocardiumThe American Journal of Cardiology, 1975