Proteolytic turnover of the Gal4 transcription factor is not required for function in vivo

Abstract
Transactivator–promoter complexes are essential intermediates in the activation of eukaryotic gene expression. Recent studies of these complexes have shown that some are quite dynamic in living cells1 owing to rapid and reversible disruption of activator–promoter complexes by molecular chaperones2,3,4,5,6, or a slower, ubiquitin–proteasome-pathway-mediated turnover of DNA-bound activator7,8,9. These mechanisms may act to ensure continued responsiveness of activators to signalling cascades by limiting the lifetime of the active protein–DNA complex. Furthermore, the potency of some activators is compromised by proteasome inhibition, leading to the suggestion that periodic clearance of activators from a promoter is essential for high-level expression8,10,11,12. Here we describe a variant of the chromatin immunoprecipitation assay that has allowed direct observation of the kinetic stability of native Gal4–promoter complexes in yeast. Under non-inducing conditions, the complex is dynamic, but on induction the Gal4–promoter complexes ‘lock in’ and exhibit long half-lives. Inhibition of proteasome-mediated proteolysis had little or no effect on Gal4-mediated gene expression. These studies, combined with earlier data, show that the lifetimes of different transactivator–promoter complexes in vivo can vary widely and that proteasome-mediated turnover is not a general requirement for transactivator function.