Determination of blood flow in the finger using near-infrared spectroscopy
- 1 October 1998
- journal article
- clinical trial
- Published by Wiley in Clinical Physiology and Functional Imaging
- Vol. 18 (5) , 426-434
- https://doi.org/10.1046/j.1365-2281.1998.00108.x
Abstract
Wavelengths in the near-infrared range have much better penetrance in organic substances than visible light. We used near-infrared spectroscopy to determine non-invasively blood flow in the fingertip. We used laser Doppler technology to measure skin blood flow as a comparison procedure. We performed several manoeuvres to change blood flow. These included restriction of flow, thermal stimulation and post-occlusion hyperaemia. Near-infrared measurements had coefficients of variation of 10-15% at the various wavelengths, contrasting with variability of 30-40% with laser Doppler measurement. With restriction of blood flow, there was a downward shift in the absorbance curve. With thermal stimulation and with post-occlusion hyperaemia, there was a rise in the curve. The flow-induced shifts in the absorbance curve were particularly pronounced in the range of 850-970 nm. The correlation between absorbance values and laser Doppler-determined blood flow was also highest in this range, averaging about 0.69 (n = 625). Near-infrared spectroscopy can therefore be used to scan the fingertip. The absorbances obtained do reflect changes in blood flow. There is a correlation with skin blood flow, although near-infrared measurements are affected by blood flow in the full breadth of the finger, not just the skin. We can measure this blood flow with significant reproducibility. It may be possible to use near-infrared spectroscopy to measure the concentration of individual blood components.Keywords
This publication has 26 references indexed in Scilit:
- The laser Doppler analysis of posturally induced changes in skin blood flow at elevated temperaturesClinical Physiology and Functional Imaging, 1992
- Influence of path length on remote optical sensing of properties of biological tissueApplied Optics, 1989
- Clinical Application of Laser Doppler Flowmetry for Measurement of Cutaneous Circulation in Health and DiseaseAngiology, 1987
- Intraoperative measurement of cortical blood flow adjacent to cerebral AVM using laser Doppler velocimetryJournal of Neurosurgery, 1987
- Determination of protein and moisture in wheat and barley by near-infrared transmissionJournal of Agricultural and Food Chemistry, 1985
- Evaluation of Cutaneous Blood Flow Responses by 133Xenon Washout and a Laser-Doppler FlowmeterJournal of Investigative Dermatology, 1983
- Least-Squares Curve Fitting of near Infrared Spectra Predicts Protein and Moisture Content of Ground WheatApplied Spectroscopy, 1982
- Model for laser Doppler measurements of blood flow in tissueApplied Optics, 1981
- Noninvasive, Infrared Monitoring of Cerebral and Myocardial Oxygen Sufficiency and Circulatory ParametersScience, 1977
- Numerical error analysis of derivative spectrometry for the quantitative analysis of mixturesAnalytical Chemistry, 1976