A system to study transcription by yeast RNA polymerase I within the chromosomal context: functional analysis of the ribosomal DNA enhancer and the RBP1/REB1 binding sites.
- 1 December 1992
- journal article
- Vol. 11 (12) , 4665-74
Abstract
We have developed a novel system to study transcription by yeast RNA polymerase I (Pol I) of mutated rDNA units within the chromosomal context. For this, complete rDNA units carrying specific oligonucleotide tags in both the 17S and 26S rRNA genes were integrated into the chromosomal rDNA locus. Using this novel system, we analysed the action of the rDNA enhancer in stimulating transcription within the chromosomal context. We found that the enhancer acts as a stimulatory element in both directions, mainly on its two most proximal rRNA operons. Deletion of the sequences between the enhancer and the Pol I promoter in the tagged, integrated unit indicated that this part of the intergenic spacer contains no other transcriptional regulatory elements for Pol I. We also applied the system to study the function of the rDNA binding protein RBP1/REB1. For this purpose, we analysed tagged units in which either one or both of the binding sites for this protein have been inactivated. We found that mutations of both binding sites strongly diminish the transcription of the adjacent operon. The protein is hypothesized to play a crucial role in keeping the chromosomal rDNA units in an optimal spatial configuration by anchoring consecutive enhancers and promoters to the nucle(ol)ar matrix.This publication has 45 references indexed in Scilit:
- Ribosome Biogenesis in YeastProgress in Nucleic Acid Research and Molecular Biology, 1991
- A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary gene activator.Genes & Development, 1990
- The nucleoskeleton and the topology of transcriptionEuropean Journal of Biochemistry, 1989
- Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeastJournal of Molecular Biology, 1988
- A complex array of sequences enhances ribosomal transcription in Xenopus laevisJournal of Molecular Biology, 1987
- Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcriptionCell, 1986
- The major promoter element of rRNA transcription in yeast lies 2 kb upstreamCell, 1984
- Enhancers and ribosomal gene spacersCell, 1984
- Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevisCell, 1984
- Unique arrangement of coding sequences for 5 S, 5.8 S, 18 S and 25 S ribosomal RNA in Saccharomyces cerevisiae as determined by R-loop and hybridization analysisJournal of Molecular Biology, 1978