Abstract
The structure and electrical properties of multi-ion beam reactive sputter (MIBERS) deposited barium strontium titanate (BST) films were characterized in terms of Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness, doping concentration, and secondary low-energy oxygen ion bombardment. Films deposited onto unheated substrates, followed by annealing at 700 °C showed lower dielectric constant (I-V) characteristics of type II films doped with high donor concentration showed a bulk space-charge-limited conduction (SCLC) with discrete shallow traps embedded in a trap-distributed background at high electric fields. The I-V characteristics of bombarded films deposited at higher substrate temperatures showed promising results of lower leakage currents and trap densities.