Effects of disorder in two-dimensional photonic crystal waveguides

Abstract
The effects of randomness on the guiding properties of waveguides embedded in disordered two-dimensional photonic crystals composed of a finite cluster of circular cylinders of infinite length are investigated for TM-polarized radiation. Different degrees of disorder in the radius, filling fraction, refractive index, and position are considered for both straight and 90° bent guides. The crystals exhibit similar sensitivity to refractive index and radius disorder, with a degree of disorder from 15%–20% yielding little substantial change in the guiding properties. A smaller range of position disorder is also considered. For strong disorder in radius and refractive index, the guide effectively closes. These results were obtained by a Monte Carlo simulation method, and the performance of this method is analyzed. The method requires at least ten realizations in some cases for convergence to commence; substantially more realizations are required for moderate and strong disorder to achieve accurate results.