Defective calcium handling in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion

Abstract
Although ischemia-reperfusion (I/R) has been shown to affect subcellular organelles that regulate the intracellular Ca2+ concentration ([Ca2+]i), very little information regarding the Ca2+ handling ability of cardiomyocytes obtained from I/R hearts is available. To investigate changes in [Ca2+]i due to I/R, rat hearts in vitro were subjected to 10–30 min of ischemia followed by 5–30 min of reperfusion. Cardiomyocytes from these hearts were isolated and purified; [Ca2+]i was measured by employing fura-2 microfluorometry. Reperfusion for 30 min of the 20-min ischemic hearts showed attenuated cardiac performance, whereas basal [Ca2+]i as well as the KCl-induced increase in [Ca2+]i and isoproterenol (Iso)-induced increase in [Ca2+]i in cardiomyocytes remained unaltered. On the other hand, reperfusion of the 30-min ischemic hearts for different periods revealed marked changes in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]i without any alterations in the KCl-induced increase in [Ca2+]i or S (−)-BAY K 8644-induced increase in [Ca2+]i. The I/R-induced alterations in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]i in cardiomyocytes were attenuated by an antioxidant mixture containing superoxide dismutase and catalase as well as by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2 for 30 min. These results suggest that abnormalities in basal [Ca2+]i as well as mobilization of [Ca2+]i upon β-adrenoceptor stimulation in cardiomyocytes are dependent on the duration of ischemic injury to the myocardium. Furthermore, Ca2+ handling defects in cardiomyocytes appear to be mediated through oxidative stress in I/R hearts.

This publication has 50 references indexed in Scilit: