Abstract
▪ Abstract The scanning capacitance microscope (SCM) provides a direct method for mapping the dopant distribution in a semiconductor device on a 10 nm scale. This capability is critical for the development, optimization, and understanding of future ULSI processes and devices. The basic elements of the SCM and its application to nanometer scale metal oxide semiconductor (MOS) capacitor measurements are described. Experimental SCM methods are reviewed. Basic measurements show that nanometer scale capacitance-voltage relations are understood. High-quality probe tips and surfaces are critical for obtaining accurate measurements of two-dimensional dopant profiles. Quantitative modeling of SCM measurement is described for converting raw SCM data to dopant density. An inverse modeling method is presented. Direct comparison between secondary ion mass spectroscopy (SIMS) and SCM-measured dopant profiles are made. Quantitative junction measurements and models are discussed and images of small transistors are presented.

This publication has 34 references indexed in Scilit: