Nomograms are superior to staging and risk grouping systems for identifying high-risk patients: preoperative application in prostate cancer
- 1 March 2003
- journal article
- Published by Wolters Kluwer Health in Current Opinion in Urology
- Vol. 13 (2) , 111-116
- https://doi.org/10.1097/00042307-200303000-00005
Abstract
We outline a generic approach to using a nomogram to predict a continuous probability of failure in high-risk patients (rather than putting patients into groups), in order to identify patients whose risk exceeds a cutoff point. We discuss the goals of any staging system, what markers should be included, and models of markers. Selection of high-risk patients for any cancer has traditionally been accomplished by the creation of risk groups, or perhaps clinical stages. Ideally, high-risk patients should be identified as accurately as possible, because of the treatment and psychological implications for the patient. We argue that a continuous multivariable prediction model, such as a nomogram, is the most appropriate and accurate way to select high-risk patients. This type of model predicts outcome more accurately than risk grouping or staging systems. As an example, we use our preoperative prostatic specific antigen recurrence nomogram to identify patients at high risk of biochemical failure, who are in need of an effective neoadjuvant therapy. It will follow from our discussion that identification of high-risk patients should follow four simple steps. First, select the endpoint of interest for the trial or the patient. Second, select the method that predicts the endpoint as accurately as possible. Third, determine the cutoff of predicted probability beyond which it makes sense to give the patient experimental therapy. Fourth, offer the novel therapy to the patient whose prediction of the endpoint, using the most accurate prediction method, exceeds the threshold.Keywords
This publication has 16 references indexed in Scilit:
- Artificial neural networks for diagnosis and prognosis in prostate cancerSeminars in Urologic Oncology, 2002
- A POSTOPERATIVE PROGNOSTIC NOMOGRAM FOR RENAL CELL CARCINOMAJournal of Urology, 2001
- VALIDATION OF PARTIN TABLES FOR PREDICTING PATHOLOGICAL STAGE OF CLINICALLY LOCALIZED PROSTATE CANCERJournal of Urology, 2000
- Pretreatment Nomogram for Predicting the Outcome of Three-Dimensional Conformal Radiotherapy in Prostate CancerJournal of Clinical Oncology, 2000
- Comparing tumour staging and grading systems: a case study and a review of the issues, using thymoma as a modelStatistics in Medicine, 2000
- Clinical states in prostate cancer: toward a dynamic model of disease progressionUrology, 2000
- On the misuses of artificial neural networks for prognostic and diagnostic classification in oncologyStatistics in Medicine, 2000
- Development of a nomogram that predicts the probability of a positive prostate biopsy in men with an abnormal digital rectal examination and a prostate-specific antigen between 0 and 4 ng/mLUrology, 1999
- Predicting Pathological Stage of Localized Prostate Cancer-ReplyJAMA, 1997
- When is a prognostic factor useful? A guide for the perplexed.Journal of Clinical Oncology, 1991