Nucleotide sequence of the maize chloroplast rpo B/C1/C2 operon: Comparison between the derived protein primary structures from various organisms with respect to functional domains

Abstract
The genes (rpo B/C1/C2) coding for the β, β′, β″ subnits of maize (Zea mays) chloroplast RNA polymerase have been located on the plastome and their nucleotide sequences established. The operon is part of a large inversion with respect to the tobacco and spinach chloroplast genomes and is flanked by the genes trnC and rps2. Notable features of the nucleotide sequence are the loss of an intron in rpoC1, and an insertion of approximately 450 by in rpOC2 compared to the dicotyledons tobacco, spinach and liver-wort. The derived amino acid sequence of this additional monocotyledon specific sequence is characterized by acidic heptameric repeat units containing stretches of glutamic acid, tyrosines and leucines with regular spacing. Other structural motifs, such as a nucleotide binding domain in the β subunit and a zinc finger in the β′ subunit, are compared at the amino acid level throughout the RNA polymerase subunits with the enzymes from other organisms in order to identify functionally important conserved regions.