Abstract
Noncoherent optical-imaging systems are identified as potential applications for the maximum-likelihood image-restoration methods that are currently being studied for various modalities of nuclear-medicine imaging. An analogy between the quantum-photon measurements of such an optical system and that of a gamma camera allow for this new application. Results of a computer simulation are presented that support its feasibility. One important property revealed by this simulation is that the maximum-likelihood method demonstrates the ability to extrapolate the Fourier spectrum of a band-limited signal. This ability can be partially understood in that this algorithm, similar to some of the other spectral-extrapolation algorithms, constrains the solution to nonnegative values. This observation has implications on the potential of superresolution, the restoration of images from a defocused optical system, and three-dimensional imaging with a microscope.