An Electron Microscopic Study of Clinical and Laboratory-Derived Strains of Teicoplanin-Resistant Staphylococcus haemolyticus

Abstract
Staphylococcal resistance to glycopeptides (which involves more teicoplanin than vancomycin) is uncommon and largely confined to Staphylococcus haemolyticus, an emerging nosocomial pathogen with a tendency to develop antibiotic resistance. In this study, six S. haemolyticus strains, including two isogenic pairs of teicoplanin-susceptible/-resistant strains and two resistant clinical isolates, were used in a morphologic and morphometric electron microscope investigation. Cells from both clinical and laboratory-derived teicoplanin-resistant strains exhibited abnormally roughened, irregular outlines when observed by transmission electron microscopy. However, no significant differences in cell wall thickness resulted from morphometric analysis when the susceptible/resistant cells of the two isogenic pairs were compared. By scanning electron microscopy, an abnormally roughened, blistered surface was associated with teicoplanin-resistant cocci. A certain variability was noted between strains, not clearly related to the resistance level. In freeze-fracture investigations, a higher number per square micrometer of intramembrane particles, more significant in the E than in the P membrane fracture face, was observed in the laboratory-derived resistant clones as compared to susceptible parent strains. Further studies are needed to understand the cause–effect relation between these ultrastructural alterations and staphylococcal resistance to teicoplanin (but not to vancomycin).

This publication has 17 references indexed in Scilit: