High definition aperture probes for near-field optical microscopy fabricated by focused ion beam milling

Abstract
We have improved the optical characteristics of aluminum-coated fiber probes used in near-field scanning optical microscopy by milling with a focused ion beam. This treatment produces a flat-end face free of aluminum grains, containing a well-defined circularly-symmetric aperture with controllable diameter down to 20 nm. The polarization behavior of the tips is circularly symmetric with a polarization ratio exceeding 1:100. The improved imaging characteristics are demonstrated by measuring single molecule fluorescence. Count rates increase more than one order of magnitude over unmodified probes, and the molecule images map a spatial electric field distribution of the aperture in agreement with calculations.