Characterization of AlGaInN diode lasers with mirrors from chemically assisted ion beam etching

Abstract
Current-injection InGaAlN heterostructure laser diodes grown by metalorganic chemical vapor deposition on sapphire substrates are demonstrated with mirrors fabricated by chemically assisted ion beam etching. Due to the independent control of physical and chemical etching, smooth vertical sidewalls with a root-mean-squared roughness of 4–6 nm have been achieved. The diodes lased under pulsed current-injection conditions at wavelengths in the range from 419 to 423 nm. The lowest threshold current density was 25 kA/cm2. Lasing was observed in both gain-guided and ridge-waveguide test diodes, with cavity lengths from 300 to 1000 μm; and output powers of 10–20 mW were achieved. Laser performance is illustrated with light output-current and current–voltage characteristics and with a high-resolution optical spectrum.