The mitochondrial KATP channel opener BMS-191095 induces neuronal preconditioning

Abstract
BMS-191095, reportedly a selective mitoK(ATP) channel opener which is free from the known side effects of the prototype mitoK(ATP) channel opener diazoxide, induced acute and delayed preconditioning against glutamate excitotoxicity and delayed preconditioning against oxygen-glucose deprivation in primary cultures of rat cortical neurons. BMS-191095 dose dependently depolarized the mitochondria, increased the phosphorylation of PKC isoforms, but had no detectable effects on the activation of MAP kinases and did not influence the expressions of HSP70 and Mn-SOD. In BMS-191095-preconditioned neurons the glutamate-induced free-radical production was abolished. Our data give the first evidence that selective opening of mitoK(ATP) channels with BMS-191095 leads to remarkable neuroprotection via mechanisms that involve mitochondrial depolarization, PKC activation and attenuated free radical production during neuronal stress.

This publication has 18 references indexed in Scilit: