Abstract
The minimal integrate-and-fire-or-burst (IFB) neuron model reproduces the salient features of experimentally observed thalamocortical (TC) relay neuron response properties, including the temporal tuning of both tonic spiking (i.e., conventional action potentials) and postinhibitory rebound bursting mediated by a low-threshold calcium current. In this paper we consider networks of IFB neurons with slow synaptic interactions and show how the dynamics may be described with a smooth firing-rate model. When the firing rate of the IFB model is dominated by a refractory process the equations of motion simplify and may be solved exactly. Numerical simulations are used to show that a pair of reciprocally interacting inhibitory spiking IFB TC neurons supports an alternating rhythm of the type predicted from the firing-rate theory. A change in a single parameter of the IFB neuron allows it to fire a burst of spikes in response to a depolarizing signal, so that it mimics the behavior of a reticular (RE) cell. Within a continuum model we show that a network of RE cells with on-center excitation can support a fast traveling pulse. In contrast, a network of inhibitory TC cells is found to support a slowly propagating lurching pulse.