Interface-limited injection in amorphous organic semiconductors
Top Cited Papers
- 7 August 2001
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 64 (8) , 085201
- https://doi.org/10.1103/physrevb.64.085201
Abstract
We examine electron transport in the archetype amorphous organic material tris(8-hydroxyquinoline) aluminum It is established that for Al, LiF/Al, and Mg:Ag cathodes, injection processes at the metal/organic contact dominate the current-voltage characteristics. We find that transport is also injection-limited at low temperatures, but that the cathode dependence of current-voltage characteristics at K is substantially reduced, raising doubts over metal-to-organic injection models that depend on the cathode work function. Given that ultraviolet photoelectron spectroscopy measurements show a shift in the vacuum potential at the metal/ interface of ∼1 eV, we investigate the impact of interfacial dipoles on adjacent molecules in the organic film. Consequently, we propose that injection is limited by charge hopping out of interfacial molecular sites whose energy distribution is broadened by local disorder in the interfacial dipole field. We derive a general analytic model of injection from interfacial states and find that it accurately predicts the current-voltage characteristics of transport in over many orders of magnitude in current and over a wide range of temperatures. The model is extended to other amorphous organic semiconductors and is found to be applicable to both polymers and small molecular weight organic compounds.
Keywords
This publication has 48 references indexed in Scilit:
- Space-charge-limited electron currents in 8-hydroxyquinoline aluminumApplied Physics Letters, 2000
- Optoelectronic processes in p-conjugated oligomers and polymersPublished by Walter de Gruyter GmbH ,1999
- Current injection from a metal to a disordered hopping system. III. Comparison between experiment and Monte Carlo simulationPhysical Review B, 1999
- Current injection from a metal to a disordered hopping system. I. Monte Carlo simulationPhysical Review B, 1999
- Current injection from a metal to a disordered hopping system. II. Comparison between analytic theory and simulationPhysical Review B, 1999
- Bulk limited conduction in electroluminescent polymer devicesJournal of Applied Physics, 1998
- Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodesJournal of Applied Physics, 1997
- Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrodeApplied Physics Letters, 1997
- Electric-field and temperature dependence of the hole mobility in poly(p-phenylene vinylene)Physical Review B, 1997
- Relationship between electroluminescence and current transport in organic heterojunction light-emitting devicesJournal of Applied Physics, 1996