The N/G/1 queue and its detailed analysis
- 1 March 1980
- journal article
- research article
- Published by Cambridge University Press (CUP) in Advances in Applied Probability
- Vol. 12 (01) , 222-261
- https://doi.org/10.1017/s0001867800033474
Abstract
We discuss a single-server queue whose input is the versatile Markovian point process recently introduced by Neuts [22] herein to be called the N-process. Special cases of the N-process discussed earlier in the literature include a number of complex models such as the Markov-modulated Poisson process, the superposition of a Poisson process and a phase-type renewal process, etc. This queueing model has great appeal in its applicability to real world situations especially such as those involving inhibition or stimulation of arrivals by certain renewals. The paper presents formulas in forms which are computationally tractable and provides a unified treatment of many models which were discussed earlier by several authors and which turn out to be special cases. Among the topics discussed are busy-period characteristics, queue-length distributions, moments of the queue length and virtual waiting time. We draw particular attention to our generalization of the Pollaczek–Khinchin formula for the Laplace–Stieltjes transform of the virtual waiting time of the M/G/1 queue to the present model and the resulting Volterra system of integral equations. The analysis presented here serves as an example of the power of Markov renewal theory.Keywords
This publication has 14 references indexed in Scilit:
- Renewal processes of phase typeNaval Research Logistics Quarterly, 1978
- Computational uses of the method of phases in the theory of queuesComputers & Mathematics with Applications, 1975
- A k -Server Queue with Phase Input and Service DistributionOperations Research, 1973
- A Queuing-Type Birth-and-Death Process Defined on a Continuous-Time Markov ChainOperations Research, 1973
- Queues With Mixed Renewal and Poisson InputsBell System Technical Journal, 1972
- Queuing Problems with Heterogeneous Arrivals and ServiceOperations Research, 1971
- Markov renewal theoryAdvances in Applied Probability, 1969
- On the moments of Markov renewal processesAdvances in Applied Probability, 1969
- Markov Renewal Processes with Finitely Many StatesThe Annals of Mathematical Statistics, 1961
- A use of complex probabilities in the theory of stochastic processesMathematical Proceedings of the Cambridge Philosophical Society, 1955