Muscle oxygenation and pulmonary gas exchange kinetics during cycling exercise on-transitions in humans

Abstract
Near-infrared spectroscopy (NIRS) was utilized to gain insights into the kinetics of oxidative metabolism during exercise transitions. Ten untrained young men were tested on a cycle ergometer during transitions from unloaded pedaling to 5 min of constant-load exercise below (VT) the ventilatory threshold. Vastus lateralis oxygenation was determined by NIRS, and pulmonary O2 uptake ( V̇o2) was determined breath-by-breath. Changes in deoxygenated hemoglobin + myoglobin concentration {Δ[deoxy(Hb + Mb)]} were taken as a muscle oxygenation index. At the transition, Δ[deoxy(Hb + Mb)] was unmodified [time delay (TD)] for 8.9 ± 0.5 s at VT (both significantly different from 0) and then increased, following a monoexponential function [time constant (τ) = 8.5 ± 0.9 s for VT]. For >VT a slow component of Δ[deoxy(Hb + Mb)] on-kinetics was observed in 9 of 10 subjects after 75.0 ± 14.0 s of exercise. A significant correlation was described between the mean response time (MRT = TD + τ) of the primary component of Δ[deoxy(Hb + Mb)] on-kinetics and the τ of the primary component of the pulmonary V̇o2 on-kinetics. The constant muscle oxygenation during the initial phase of the on-transition indicates a tight coupling between increases in O2 delivery and O2 utilization. The lack of a drop in muscle oxygenation at the transition suggests adequacy of O2 availability in relation to needs.