Validation Study of Artificial Neural Network Models for Prediction of Methicillin-Resistant Staphylococcus aureus Carriage
- 1 July 2008
- journal article
- research article
- Published by Cambridge University Press (CUP) in Infection Control & Hospital Epidemiology
- Vol. 29 (7) , 607-614
- https://doi.org/10.1086/588588
Abstract
Objective.: Use of active surveillance cultures for methicillin-resistant Staphylococcus aureus (MRSA) for all patients admitted to the intensive care unit has been shown to reduce nosocomial transmission. However, the cost-effectiveness and the utility of implementing use of active surveillance cultures nationwide remain controversial. We sought to develop an artificial neural network (ANN) model that would predict the likelihood of MRSA colonization.Setting.: Two acute care hospitals, one in Pittsburgh (hospital A) and one in Kaohsiung, Taiwan (hospital B).Methods.: Nasal cultures were performed for all patients admitted to the hospitals. A total of 46 potential risk factors in hospital A and 86 potential risk factors in hospital B associated with MRSA colonization were assessed. Culture results were obtained; 75% of the data were used for training our ANN model, and the remaining 25% were used for validating our ANN model. The culture results were the “gold standard” for determining the accuracy of the model predictions.Results.: The ANN model predictions were accurate 95.2% of the time for hospital A (sensitivity, 94.3%; specificity, 96.0%) and 94.2% of the time for hospital B (sensitivity, 96.6%; specificity, 91.8%), integrating all potential risk factors into the model. Only 17 potential risk factors were needed for the hospital A ANN model (accuracy, 90.9%; sensitivity, 98.5%; specificity, 83.4%), and only 20 potential risk factors were needed for the hospital B ANN model (accuracy, 90.5%; sensitivity, 96.6%; specificity, 84.3%), if the minimal risk factor method was used. Cross-validation analysis showed an average accuracy of 85.6% (sensitivity, 91.3%; specificity, 80.0%).Conclusion.: Our ANN model can be used to predict with an accuracy of more than 90% which patients carry MRSA. The false-negative rates were significantly lower than the false-positive rates in the ANN predictions, which can serve as a safety buffer in case of patient misclassification.Keywords
This publication has 25 references indexed in Scilit:
- Look before You Leap: Active Surveillance for Multidrug-Resistant OrganismsClinical Infectious Diseases, 2007
- Legislative Mandates for Use of Active Surveillance Cultures to Screen for Methicillin-ResistantStaphylococcus aureusand Vancomycin-Resistant Enterococci: Position Statement From the Joint SHEA and APIC Task ForceInfection Control & Hospital Epidemiology, 2007
- Impact of a methicillin-resistant Staphylococcus aureus active surveillance program on contact precaution utilization in a surgical intensive care unit*Critical Care Medicine, 2007
- Active Surveillance for Methicillin-Resistant Staphylococcus aureus(MRSA) Decreases the Incidence of MRSA BacteremiaInfection Control & Hospital Epidemiology, 2006
- Prediction of Response to Hormonal Treatment in Metastatic Breast CancerOncology, 2002
- Clinical decision support systems for intensive care units: using artificial neural networksMedical Engineering & Physics, 2001
- The Changing Epidemiology of Staphylococcus aureus?Emerging Infectious Diseases, 2001
- Diagnosis of MRSA with neural networks and logistic regression approachHealth Care Management Science, 2000
- Application of artificial neural networks to clinical medicineThe Lancet, 1995
- Connectionist models in medicine: an investigation of their potentialPublished by Springer Nature ,1989