Squeezed states, metaplectic group, and operator Möbius transformations

Abstract
We present an analysis, based on the metaplectic group Mp(2), of the recently introduced single-mode inverse creation and annihilation operators and of the associated eigenstates of different two-photon annihilation operators. We motivate and obtain a quantum operator form of the classical Möbius or fractional linear transformation. The subtle relation to the two unitary irreducible representations of Mp(2) is brought out. For problems involving inverse operators the usefulness of the Bargmann analytic function representation of quantum mechanics is demonstrated. Squeezing, bunching, and photon-number distributions of the four families of states that arise in this context are studied both analytically and numerically.