Modulation of rat serosal mast cell biochemistry by in vivo dexamethasone administration.
Open Access
- 1 August 1983
- journal article
- research article
- Published by Oxford University Press (OUP) in The Journal of Immunology
- Vol. 131 (2) , 934-939
- https://doi.org/10.4049/jimmunol.131.2.934
Abstract
To examine steroid-induced biochemical alterations in the mast cell secretory process, rats were injected with intramuscular dexamethasone or saline for 4 days, and serosal mast cells and lung tissue were obtained from each group. Radioligand binding studies utilizing 1-[propyl-1,2-3H]dihydroalprenolol (3H-DHA) demonstrated a 23.1 +/- 0.8% increase in rat lung beta-adrenergic receptors in steroid-treated rats, but the mast cell beta-adrenergic receptors were unaffected. Neither resting mast cell cyclic adenosine 3':5'-monophosphate (cAMP) levels nor the degree of cAMP augmentation induced by isoproterenol were changed by steroid administration. Mast cells from rats treated with dexamethasone released only 48.6 +/- 8.9 and 58.8 +/- 6.0% of the beta-hexosaminidase released from saline-treated rat mast cells when sensitized with anti-dinitrophenyl (DNP) IgE and challenged with DNP-bovine serum albumin antigen or the calcium ionophore A23187, respectively. [3H]serotonin release in cells from steroid-treated rats was 41.8 +/- 7.9 and 87.6 +/- 2.6% of control release stimulated by antigen or A23187, respectively. [14C]arachidonic acid incorporation into mast cell phospholipids followed by antigen or A23187 challenge revealed that cells from dexamethasone-treated rats release 61.3 +/- 15.6% and 62.1 +/- 11.8% of labeled metabolites, respectively, compared to controls. The addition of exogenous arachidonic acid 5 min prior to antigen challenge caused a similar decrease in mediator release in cells from saline- and steroid-treated rats (36.7 +/- 6.1 and 38.4 +/- 0.9%, respectively). When arachidonic acid was added to sensitized cells after specific antigen, no significant changes in beta-hexosaminidase release were noted in either group. Chronic in vivo dexamethasone administration markedly decreases mast cell mediator release without changing resting cAMP levels. The release of arachidonic acid metabolites is reduced in steroid-treated cells, possibly through the inhibition of phospholipases. Exogenous arachidonic acid cannot overcome this inhibition, suggesting that an earlier step in phospholipid metabolism, perhaps involving phospholipase C, may be important.This publication has 4 references indexed in Scilit:
- Rat lung cholinergic receptor: characterization and regulation by corticosteroidsJournal of Applied Physiology, 1982
- The regulation of lipomodulin, a phospholipase inhibitory protein, in rabbit neutrophils by phosphorylation.Journal of Biological Chemistry, 1981
- Corticosteroid-Induced Differential Regulation of β-Adrenergic Receptors in Circulating Human Polymorphonuclear Leukocytes and Mononuclear Leukocytes*Journal of Clinical Endocrinology & Metabolism, 1980
- IMMUNOLOGICAL RELEASE OF BETA-HEXOSAMINIDASE AND BETA-GLUCURONIDASE FROM PURIFIED RAT SEROSAL MAST-CELLS1979