Effects of Ca2+ on phosphoinositide breakdown in exocrine pancreas
- 15 September 1986
- journal article
- research article
- Published by Portland Press Ltd. in Biochemical Journal
- Vol. 238 (3) , 765-772
- https://doi.org/10.1042/bj2380765
Abstract
Recent studies have established that inositol 1,4,5-trisphosphate [I(1,4,5)P3] provides the link between receptor-regulated polyphosphoinositide hydrolysis and mobilization of intracellular Ca2+. Here, we report the effects of Ca2+ on inositol trisphosphate (IP3) formation from phosphatidylinositol bisphosphate (PIP2) catalysed by phospholipase C in intact and electrically permeabilized rat pancreatic acinar cells. In permeabilized cells, the Ca2+-mobilizing agonist caerulein stimulated [3H]IP3 formation when the free [Ca2+] was buffered at 140 nM, the cytosolic free [Ca2+] of unstimulated pancreatic acinar cells. When the free [Ca2+] was reduced to less than 10 nM, caerulein did not stimulate [3H]IP3 formation. Ca2+ in the physiological range stimulated [3H]IP3 formation and reduced the amount of [3H]PIP2 in permeabilized cells. The effects of Ca2+ and the receptor agonist caerulein were additive, but we have not established whether this reflects independent effects on the same or different enzymes. The effect of Ca2+ on [3H]IP3 formation by permeabilized cells was unaffected by inhibitors of the cyclo-oxygenase and lipoxygenase pathways of arachidonic acid metabolism; nor were the effects of Ca2+ mimicked by addition of arachidonic acid. These results suggest that the effects of Ca2+ on phospholipase C activity are not a secondary consequence of Ca2+ activation of phospholipase A2. Changes in free [Ca2+] (less than 10 nM-1.2 mM) did not affect the metabolism of exogenous [3H]I(1,4,5)P3 by permeabilized cells. In permeabilized cells, breakdown of exogenous [3H]IP3 to [3H]IP2 (inositol bisphosphate), and formation of [3H]IP3 in response to receptor agonists were equally inhibited by 2,3-bisphosphoglyceric acid. This suggests that the [3H]IP2 formed in response to receptor agonists is entirely derived from [3H]IP3. In intact cells, [3H]IP3 formation was stimulated when ionomycin was used to increase the cytosolic free [Ca2+]. However, a maximal concentration of caerulein elicited ten times as much IP3 formation as did the highest physiologically relevant [Ca2+]. We conclude that the major effect of receptor agonists on IP3 formation does not require an elevation of cytosolic free [Ca2+], although the increase in free [Ca2+] that normally follows IP3 formation may itself have a small stimulatory effect on phospholipase C.This publication has 34 references indexed in Scilit:
- Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytesBiochemical Journal, 1985
- Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slicesBiochemical Journal, 1985
- Relationship between secretagogue-induced Ca2+ release and inositol polyphosphate production in permeabilized pancreatic acinar cells.Journal of Biological Chemistry, 1985
- CHARACTERIZATION OF FORMYLMETHIONYL-LEUCYL-PHENYLALANINE STIMULATION OF INOSITOL TRISPHOSPHATE ACCUMULATION IN RABBIT NEUTROPHILS1985
- Carbachol causes rapid phosphodiesteratic cleavage of phosphatidylinositol 4,5-bisphosphate and accumulation of inositol phosphates in rabbit iris smooth muscle; prazosin inhibits noradrenaline- and ionophore A23187-stimulated accumulation of inositol phosphatesBiochemical Journal, 1984
- Inositol trisphosphate, a novel second messenger in cellular signal transductionNature, 1984
- Calcium pools in saponin-permeabilized guinea pig hepatocytes.Journal of Biological Chemistry, 1983
- Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphateNature, 1983
- Ionophore A-23187- and thrombin-induced platelet aggregation: independence from cycloxygenase products.Proceedings of the National Academy of Sciences, 1978
- Inositol phospholipids and cell surface receptor functionBiochimica et Biophysica Acta (BBA) - Reviews on Biomembranes, 1975