The Membrane-Perturbing Properties of Palmitoyl-Coenzyme A and Palmitoylcarnitine. A Comparative Study

Abstract
Fatty acyl-coenzyme A's are temporarily converted into fatty acylcarnitines while transferred across the inner mitochondrial membrane, in their catabolic pathway. In search of an explanation for the need of this coenzyme exchange, the present work describes comparatively the abilities of both kinds of fatty acyl derivatives (represented by palmitoyl-coenzyme A and palmitoylcarnitine) in binding to and perturbing the structure of phosphatidylcholine bilayers in the form of large unilamellar vesicles. Both palmitoyl-coenzyme A and palmitoylcarnitine partition preferentially into the bilayer lipids, so that their free concentration in water is in practice negligible. However, palmitoylcarnitine is able to disrupt the membrane barrier to solutes, leading to vesicle leakage, and, at higher concentrations, it produces complete membrane solubilization, while palmitoyl-coenzyme A produces neither leakage nor solubilization. Palmitoylcarnitine has the properties of many commonly used biochemical detergents. The different behavior of both fatty acyl derivatives helps to explain the need for the transitory coenzyme A/carnitine exchange, and provides a pathogenic mechanism for some genetic defects of mitochondrial fatty acid transport. Other pathophysiological processes in which palmitoylcarnitine has been putatively involved are examined in light of the above results.