Immunocytogenetics

Abstract
Mice heterozygous for one or more Robertsonian (Rb) translocation chromosomes have been used to analyze synaptonemal complex (SC) configurations and kinetochore arrangements in trivalents and multivalents. Rb heterozygosity without arm homologies leads to the formation of heteromorphic trivalents in meiosis I; alternating homology of the chromosome arms produces ringlike or chainlike multivalents. Immunofluorescence double-labeling with human antibodies to SCs and kinetochores was performed on surface-spread pachytene spermatocytes. Both Rb bivalents and Rb trivalents clearly showed that metacentrics possess only one centromere. In heteromorphic trivalent SCs, the nonhomologous kinetochores of the two acrocentrics were closely paired in a cis configuration and juxtaposed opposite the kinetochore of the metacentric; the latter appeared to be an integral part of the longitudinal SC axis. Meiotic multivalents of interpopulation hybrids included up to 36 chromosome arms. In multivalent SCs, the kinetochores always lay together, with the SC arms arranged away from the central centromere cluster. The paracentromeric regions of the Rb chromosomes appeared to remain unsynapsed on both sides of the centromeres. The SC arms were often linked by end-to-end associations. Following desynapsis of the multivalent SC, the kinetochores of the Rb metacentrics showed a highly nonrandom topologic distribution within the nucleus, reminiscent of their arrangement during synapsis.