A biochemical and stereological study of neonatal rat hepatocyte subpopulations

Abstract
Hepatocytes from 12-day-old rats, pre- and post-natally exposed to alcohol, together with those from pair-fed controls, were isolated and subfractionated in six cell subpopulations on Percoll density gradients. These cells were characterized using a combination of biochemical and stereological methods. The low density cells (F2) mainly showed biochemical and stereological features of perivenous hepatocytes, whereas the heavier cells (F6) were primarily periportal hepatocytes. The alcohol-metabolizing enzymes, alcohol dehydrogenase and aldehyde dehydrogenase (high and low Km) showed more activity in the F2 fraction. Alcohol-altered mitochondria and Golgi apparatus occurred mainly in F2 cells, whereas the endoplasmic reticulum and lysosomes appeared to be more altered in the F6 hepatocytes. Alcohol also induced the appearance of some small hepatocytes, with a well-developed rough endoplasmic reticulum and an increased number of mitochondria. Biochemical data indicated that glutamate dehydrogenase and alanine aminotransferase were more affected in F2 cells from alcohol-treated rats, and that the activity of the ethanol-metabolizing enzymes was also reduced in these hepatocytes. Our results indicate that alcohol exposure during zonal development in the liver could have a selective effect on specific cell components depending on the acinar zone, and that the perivenous hepatocytes appear to be more damaged under these conditions.