Frequency locking of 1.5 mu m DFB laser diode to a neon indicator lamp using the optogalvanic effect

Abstract
Many proposed applications for optical wavelength division multiplexing (WDM) networks and coherent optical communication systems require the use of a frequency-stabilized optical reference. The feasibility of producing such a reference by using the optogalvanic effect to frequency-lock a distributed feedback laser (DFB) to the atomic absorption line of a low-cost neon indicator lamp is discussed. Frequency fluctuations of the free-running laser were reduced by more than a factor of 25 to +or-16 MHz. This is the first reported use of a miniature indicator lamp to frequency-lock a semiconductor laser in the 1.5 mu m spectral window.