Global Existence for Reaction-Diffusion Systems with Mass Control and Critical Growth with Respect to the Gradient
- 1 January 2001
- journal article
- Published by Elsevier in Journal of Mathematical Analysis and Applications
- Vol. 253 (2) , 532-557
- https://doi.org/10.1006/jmaa.2000.7163
Abstract
No abstract availableKeywords
This publication has 11 references indexed in Scilit:
- Nonlinear parabolic equations with natural growth conditions and L1 dataNonlinear Analysis, 1996
- Solutions faibles d’équations paraboliques quasilinéaires avec données initiales mesurésAnnales mathématiques Blaise Pascal, 1996
- Weak Solutions of Some Quasilinear Elliptic Equations with Data MeasuresSIAM Journal on Mathematical Analysis, 1993
- Interior estimates for a class of reaction-diffusion systems from L1 a priori estimatesJournal of Differential Equations, 1992
- Solvability of perturbed elliptic equations with critical growth exponent for the gradientJournal of Mathematical Analysis and Applications, 1989
- Existence results for some quasilinear parabolic equationsNonlinear Analysis, 1989
- On a non linear partial differential equation having natural growth terms and unbounded solutionAnnales de l'Institut Henri Poincaré C, Analyse non linéaire, 1988
- On a result of K. Masuda concerning reaction-diffusion equationsTohoku Mathematical Journal, 1988
- Global Existence and Boundedness in Reaction-Diffusion SystemsSIAM Journal on Mathematical Analysis, 1987
- Semi-linear second-order elliptic equations in L1Journal of the Mathematical Society of Japan, 1973