Different sequence elements are required for function of the cauliflower mosaic virus polyadenylation site in Saccharomyces cerevisiae compared with in plants.
Open Access
- 1 May 1992
- journal article
- research article
- Published by Taylor & Francis in Molecular and Cellular Biology
- Vol. 12 (5) , 2322-2330
- https://doi.org/10.1128/mcb.12.5.2322
Abstract
We show that the polyadenylation site derived from the plant cauliflower mosaic virus (CaMV) is specifically functional in the yeast Saccharomyces cerevisiae. The mRNA 3' endpoints were mapped at the same position in yeast cells as in plants, and the CaMV polyadenylation site was recognized in an orientation-dependent manner. Mutational analysis of the CaMV 3'-end-formation signal revealed that multiple elements are essential for proper activity in yeast cells, including two upstream elements that are situated more than 100 and 43 to 51 nucleotides upstream of the poly(A) addition site and the sequences at or near the poly(A) addition site. A comparison of the sequence elements that are essential for proper function of the CaMV signal in yeast cells and plants showed that both organisms require a distal and a proximal upstream element but that these sequence elements are not identical in yeast cells and plants. The key element for functioning of the CaMV signal in yeast cells is the sequence TAGTATGTA, which is similar to a sequence previously proposed to act in yeast cells as a bipartite signal, namely, TAG ... TATGTA. Deletion of this sequence in the CaMV polyadenylation signal abolished 3'-end formation in yeast cells, and a single point mutation in this motif reduced the activity of the CaMV signal to below 15%. These results indicate that the bipartite sequence element acts as a signal for 3'-end formation in yeast cells but only together with other cis-acting elements.Keywords
This publication has 42 references indexed in Scilit:
- Detection of specific sequences among DNA fragments separated by gel electrophoresisPublished by Elsevier ,2006
- Upstream sequences other than AAUAAA are required for efficient messenger RNA 3'-end formation in plants.Plant Cell, 1990
- Proximity to the promoter inhibits recognition of cauliflower mosaic virus polyadenylation signalNature, 1990
- Sequences 5' to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses.Genes & Development, 1990
- RNA Processing Generates the Mature 3′ End of Yeast CYC1 Messenger RNA in VitroScience, 1988
- 3′ cleavage and polyadenylation of mRNA precursors in vitro requires a poly(A) polymerase, a cleavage factor, and a snRNPCell, 1988
- Multiple factors are required for specific RNA cleavage at a poly(A) addition site.Genes & Development, 1988
- Electrophoretic separation of polyadenylation-specific complexes.Genes & Development, 1987
- Mutationally altered 3′ ends of yeast CYC1 mRNA affect transcript stability and translational efficiencyJournal of Molecular Biology, 1984
- 3′ Non-coding region sequences in eukaryotic messenger RNANature, 1976