Abstract
The dynamical evolution of Classical Kuiper Belt Objects (CKBOs) divides into two parts, according to the secular theory of test particle orbits. The first part is a forced oscillation driven by the planets, while the second part is a free oscillation whose amplitude is determined by the initial orbit of the test particle. We extract the free orbital inclinations and free orbital eccentricities from the osculating elements of 125 known CKBOs. The free inclinations of 32 CKBOs strongly cluster about 2 degrees at orbital semi-major axes between 44 and 45 AU. We propose that these objects comprise a collisional family, the first so identified in the Kuiper Belt. Members of this family are plausibly the fragments of an ancient parent body having a minimum diameter of \~800 km. This body was disrupted upon colliding with a comparably sized object, and generated ejecta having similar free inclinations. Our candidate family is dynamically akin to a sub-family of Koronis asteroids located at semi-major axes less than 2.91 AU; both families exhibit a wider range in free eccentricity than in free inclination, implying that the relative velocity between parent and projectile prior to impact lay mostly in the invariable plane of the solar system. We urge more discoveries of new CKBOs to test the reality of our candidate family and physical studies of candidate family members to probe the heretofore unseen interior of a massive, primitive planetesimal.