On the energetics of dislocation emission from a crack tip in nickel containing hydrogen
- 1 July 1994
- journal article
- Published by Springer Nature in Journal of Materials Research
- Vol. 9 (7) , 1805-1819
- https://doi.org/10.1557/jmr.1994.1805
Abstract
A method that determines the work done in shearing atom pairs straddling the slip plane, Φ, during emission of dislocations from a crack tip in an atomic model is presented. The model is based on an EAM-type potential for nickel. The dislocations are emitted as partials, and the disregistry, Δ, across the slip plane is found to be fit accurately by a simple arctan function of position for each partial. The width of the partials is also found to remain essentially constant as they are emitted and move away from the crack tip. Rice's unstable stacking energy is extracted from the Φ - Δ curves for the atom pairs along the slip plane and is observed to vary somewhat, particularly near the crack tip. In addition to the Φ (Δ) at points on the slip plane, the total work done on the entire slip plane is determined as a function of the dislocation position in the spirit of the Peierls approach. The derivative of this total work with respect to dislocation position leads to the lattice resistance, ŝr. The first partial dislocation to be emitted experiences a maximum in ŝr at about 0.2 nm from the crack tip, and several contributions to the overall resistance can be identified including the creation of a new surface at the tip as emission occurs, the creation of stacking fault as the dislocation glides away from the tip, and a small but discernible periodic component with a period related to the lattice. A string of hydrogen interstitials is introduced at various locations in the lattice and its effect on Δ, Φ - Δ curves along the slip plane, and the lattice resistance is examined. A substantial effect on the unstable stacking energy results as the dislocation passes an interstitial on the slip plane, but the effect of an interstitial on the resistance to dislocation emission expressed in terms of the maximum ŝr is small and then only if it is confined to a region very near the crack tip. The significance of these results is discussed together with some additional observations including dislocation pinning on the interstitials.Keywords
This publication has 13 references indexed in Scilit:
- Dislocation nucleation and crack stability: Lattice Green’s-function treatment of cracks in a model hexagonal latticePhysical Review B, 1993
- An atomic simulation of the influence of hydrogen on the fracture behavior of nickelJournal of Materials Research, 1992
- Some aspects of forces and fields in atomic models of crack tipsJournal of Materials Research, 1991
- Dislocation emission from crack tipsPhilosophical Magazine A, 1991
- An atomic model of crack tip deformation in aluminum using an embedded atom potentialJournal of Materials Research, 1990
- Atomic simulation of the dislocation core structure and Peierls stress in alkali halidePhilosophical Magazine, 1976
- Two dimensional elastic Green function for a cracked anisotropic bodyJournal of Physics F: Metal Physics, 1975
- Ductile and brittle crystalsPhilosophical Magazine, 1967
- Edge dislocation inside a circular inclusionJournal of the Mechanics and Physics of Solids, 1965
- Geometrical considerations concerning the structural irregularities to be assumed in a crystalProceedings of the Physical Society, 1940