Application of Fluorescence Correlation Spectroscopy for Velocity Imaging in Microfluidic Devices

Abstract
In this paper we present and demonstrate a technique for mapping fluid flow rates in microfluidic systems with sub-micrometer resolution using confocal microscopy in conjunction with fluorescence correlation spectroscopy (FCS). Flow velocities ranging from ∼50 μm/s to ∼ 10 cm/s can be recorded using fluorescent polymer nanospheres as fluid motion tracers. Velocity profiles and images of the flow in poly(dimethylsiloxane)–glass microchannels are presented and analyzed. Using the method, velocity images along the horizontal (top view) and vertical planes within a microdevice can be obtained. This is, to our knowledge, the first report of FCS for producing velocity maps. The high-resolution velocity maps can be used to characterize and optimize microdevice performance and to validate simulation efforts.