Monolithic integration of curved waveguides and channeled-substrate DH lasers by wet chemical etching

Abstract
Integration of AlGaAs/GaAs curved waveguides and other two-dimensional waveguides with DH lasers and detectors is demonstrated. Devices are fabricated from LPE AlGaAs/GaAs layers by wet chemical etching processes. Differential transfer efficiencies of\eta_{t}= 5percent are routinely achieved in a structure consisting of an integrated laser, a 90° curved waveguide with 150μm radius, and a detector, for the case where one laser mirror is etched and one cleaved. This value is\eta_{t}= 4percent if both mirrors are etched. A comparison of waveguide attenuation between straight and curved rib waveguides is given, along with the transfer characteristics of curved waveguides. The loss coefficient of curved rib waveguides with 150-μm radius is about two times that of a straight waveguide of the same length. The fabrication and properties of channeled-substrate crescent (CSC) lasers and detectors with transverse single-mode confinement, monolithically integrated by means of passive CSC interconnecting waveguides, is also described.

This publication has 12 references indexed in Scilit: