Abstract
We review the scientific and engineering understanding of various types of inland and coastal flooding by considering the different causes and dynamic processes involved, especially in extreme events. Clear progress has been made in the accuracy of numerical modelling of meteorological causes of floods, hydraulics of flood water movement and coastal wind–wave-surge. Probabilistic estimates from ensemble predictions and the simultaneous use of several models are recent techniques in meteorological prediction that could be considered for hydraulic and oceanographic modelling. The contribution of remotely sensed data from aircraft and satellites is also considered. The need to compare and combine statistical and computational modelling methodologies for long range forecasts and extreme events is emphasized, because this has become possible with the aid of kilometre scale computations and network grid facilities to simulate and analyse time-series and extreme events. It is noted that despite the adverse effects of climatic trends on flooding, appropriate planning of rapidly growing urban areas could mitigate some of the worst effects. However, resources for flood prevention, including research, have to be considered in relation to those for other natural disasters. Policies have to be relevant to the differing geology, meteorology and cultures of the countries affected.

This publication has 28 references indexed in Scilit: