Analysis of unstable recombinant Saccharomyces cerevisiae population growth in selective medium
- 1 July 1986
- journal article
- research article
- Published by Wiley in Biotechnology & Bioengineering
- Vol. 28 (7) , 996-1006
- https://doi.org/10.1002/bit.260280710
Abstract
Widely applied selection strategies for plasmid‐containing cells in unstable recombinant populations are based upon synthesis in those cells of an essential, selection gene product. Regular partitioning of this gene product combined with asymmetric plasmid segregation produces plasmid‐free cells which retain for some time the ability to grow in selective medium. This theory is elaborated here in terms of a segregated model for an unstable recombinant population which predicts population growth characteristics and composition based upon experimental data for stable strain growth kinetics, plasmid content, and selection gene product stability. Analytical solutions from this model are compared with an unsegregated phenomenological model to evaluate the effective specific growth rate of plasmid‐free cells in selective medium. Model predictions have been validated using experimental growth kinetics and flow cytometry data for Saccharomyces cerevisiae D603 populations containing one of the plasmids YCpG1ARS1, YCpG1ΔR8, YCpG1ΔR88, YCpG1ΔH103, YCpG1ΔH200, pLGARS1, and pLGSD5. The recombinant strains investigated encompass a broad range of plasmid content (from one to 18 plasmids per cell) and probability α of plasmid loss at division (0.05 ≤ α ≤ 0.42). Experimental data for all strains considered is inconsistent with the hypothesis that plasmid‐free cells are unable to grow in selective medium. For a given value of a, the fraction of plasmid‐containing cells in the population decreases with increasing plasmid content and increases for less stable selection gene products. This conceptual framework and mathematical model will aid in strain development for greater effective stability.This publication has 19 references indexed in Scilit:
- Effects of recombinant plasmid content on growth properties and cloned gene product formation in Escherichia coliBiotechnology & Bioengineering, 1985
- Analysis of growth rate effects on productivity of recombinant Escherichia coli populations using molecular mechanism modelsBiotechnology & Bioengineering, 1984
- Mathematical modelling of genetic segregation kinetics obtained with chemostat cultures of procaryotic microorganismsJournal of Basic Microbiology, 1984
- Pedigree analysis of plasmid segregation in yeastCell, 1983
- Detection of bacterial ?-galactosidase activity in individual Saccharomyces cerevisiae cells by flow cytometryBiotechnology Letters, 1983
- Industrial fermentations with (unstable) recombinant culturesPhilosophical Transactions of the Royal Society of London. B, Biological Sciences, 1982
- A PERSPECTIVE ON THE APPLICATION OF GENETIC ENGINEERING: STABILITY OF RECOMBINANT PLASMIDAnnals of the New York Academy of Sciences, 1981
- Partitioning of bacterial plasmids during cell division: a cis-acting locus that accomplishes stable plasmid inheritanceCell, 1980
- R plasmid gene dosage effects in Escherichia coli K-12: Copy mutants of the R plasmid R1drd-19Plasmid, 1977
- Formulation of structured growth modelsBiotechnology & Bioengineering, 1976