Study of cluster-assembled nanophase copper using NMR
- 1 February 1994
- journal article
- Published by Springer Nature in Journal of Materials Research
- Vol. 9 (2) , 336-342
- https://doi.org/10.1557/jmr.1994.0336
Abstract
Cu NMR spectra from cluster-assembled nanophase copper with an average grain size between 5 and 10 nm show a broadened peak, at the normal Knight-shifted frequency for copper metal, which arises from only the central 1/2 to −1/2 transition. The broadening of the central line is associated with a distribution of Knight shifts. A very broad background is observed on either side of that peak, associated with broadening due to internal electric field gradients. Pulsed NMR measurements of the central peak show that virtually all the copper signals are significantly broadened and have a spin-spin relaxation time longer than larger-grained copper samples. The strain within the grains is estimated to be 0.7%. Line shape measurements as a function of spin echo delay time show there are a number of copper sites with longer relaxation times which have a significantly larger broadening. Those sites are tentatively identified as being at or near a grain boundary or free surface. A small orientation effect is observed indicating an anisotropy within the samples. An isochronal anneal of one sample showed significant line narrowing after an anneal at 450 °C consistent with other nanophase metals which show grain growth above 40-50% of the absolute melting temperature. The dependence of NMR linewidth on average grain diameter is estimated.Keywords
This publication has 13 references indexed in Scilit:
- Grain size effects in nanocrystalline materialsJournal of Materials Research, 1992
- Investigation of self-diffusion in nanocrystalline copper by NMRSolid State Communications, 1991
- Cluster-Assembled Nanophase MaterialsAnnual Review of Materials Science, 1991
- Structural characterization of nanometer-sized crystalline Pd by x-ray-diffraction techniquesPhysical Review B, 1991
- Mechanical behavior of nanocrystalline Cu and PdJournal of Materials Research, 1991
- Structurally induced supermodulus effect in superlatticesPhysical Review Letters, 1988
- Diffusion in nanocrystalline materialSolid State Communications, 1987
- Diffusion superficielle sur le cuivre: Influence des marchesSurface Science, 1981
- Quadrupole Broadening of Nuclear Magnetic Resonance Lines in Deformed Copper and AluminumPhysica Status Solidi (b), 1969
- The Broadening of Magnetic Resonance Lines due to Field Inhomogeneities in Powdered SamplesProceedings of the Physical Society, 1962