Abstract
Particular analytical solutions of the two-dimensional Schrodinger equation are described for two electrons (interacting with Coulomb potentials) in a homogeneous magnetic field B and an external oscillator potential with frequency omega 0. These exact solutions occur at an infinite and countable set of values of the quantity omega = square root ( omega 02+ 1/4 (B/c)2). Additionally, approximate closed-form solutions for the limits of small omega (perturbation theory in the electron-electron interaction) and large omega (harmonic approximation) are discussed and compared with the exact solutions.

This publication has 5 references indexed in Scilit: