Classicality in discrete Wigner functions

Abstract
Gibbons et al. [Phys. Rev. A 70, 062101(2004)] have recently defined a class of discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that the only pure states having non-negative W for all such functions are stabilizer states, as conjectured by one of us [Phys. Rev. A 71, 042302 (2005)]. We also show that the unitaries preserving non-negativity of W for all definitions of W form a subgroup of the Clifford group. This means pure states with non-negative W and their associated unitary dynamics are classical in the sense of admitting an efficient classical simulation scheme using the stabilizer formalism.Comment: 10 pages, 1 figur
All Related Versions

This publication has 32 references indexed in Scilit: