Kinetics of copper drift in PECVD dielectrics

Abstract
We quantified the drift of Cu ions into various PECVD dielectrics by measuring shifts in capacitance-voltage behavior after subjecting Cu-gate MOS capacitors to bias-temperature stress. At a field of 1.0 MV/cm and temperature of 100/spl deg/C, Cu ions drift readily into PECVD oxide with a projected accumulation of 2.7/spl times/10/sup 13/ ions/cm/sup 2/ after 10 years. However, in PECVD oxynitride, the projected accumulation under the same conditions is only 2.3/spl times/10/sup 10/ ions/cm/sup 2/. These findings demonstrate the necessity of integrating drift barriers, such as PECVD oxynitride layers, in Cu interconnection systems to ensure threshold stability of parasitic field n-MOS devices.

This publication has 5 references indexed in Scilit: