Determination of the Orbit of the Planetary Companion to the Metal-Rich Star HD 45350

Abstract
We present the precise radial velocity (RV) data for the metal-rich star HD 45350 collected with the Harlan J. Smith (HJS) 2.7 m telescope and the Hobby-Eberly Telescope (HET) at McDonald Observatory. This star was noticed by us as a candidate for having a giant planetary companion in a highly eccentric orbit, but the lack of data close to periastron left the amplitude and thus mass of the planet poorly constrained. Marcy et al. (2005) announced the presence of the planet based on their Keck/HIRES data, but those authors also cautioned that the remaining uncertainties in the orbital solution might be large due to insufficient data near periastron passage. In order to close this phase gap we exploited the flexible queue scheduled observing mode of the HET to obtain intensive coverage of the most recent periastron passage of the planet. In combination with the long term data from the HJS 2.7 m telescope we determine a Keplerian orbital solution for this system with a period of 962 days, an eccentricity of e=0.76 and a velocity semi-amplitude K of 57.4 m/s. The planet has a minimum mass of m sin i = 1.82 +- 0.14 M_Jup and an orbital semi-major axis of a = 1.92 +-0.07 AU.
All Related Versions

This publication has 11 references indexed in Scilit: