Cell death in normal and rough eye mutants of Drosophila

Abstract
The regular, reiterated cellular pattern of the Drosophila compound eye makes it a sensitive amplifier of defects in cell death. Quantitative and histological methods reveal a phase of cell death between 35 and 50 h of development which removes between 2 and 3 surplus cells per ommatidium. The timing of this epoch is consistent with cell death as the last fate to be specified in the progressive sequence of cell fates that build the ommatidium. An ultrastructural survey of cell death suggests dying cells in the fly eye have similarities as well as differences with standard descriptions of programmed cell death. A failure of cell death to remove surplus cells disorganizes the retinal lattice. A screen of rough eye mutants identifies two genes, roughest and echinus, required for the normal elimination of cells from the retinal epithelium. The use of an enhancer trap as a cell lineage marker shows that the cone cells, like other retinal cells, are not clonally related to each other or to their neighbors.